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Motivation

m Advection velocity:
a=(a;,a)" =|a|(cos,sinep)".

Scalar Advection-Diffusion Equation

Lu=—kAUu+a-Vu = f
diffusion  advection m x = 1 = diffusivity.

m ¢ — advection direction.

m Describes many transport phenomena in fluid mechanics.
m Usual scalar model for the more challenging Navier-Stokes equations.

m Global Péclet number (L = length scale associated with €2):

o At of advection  Lja| pe. | Pr (thermal diffusion)
~ rate of diffusion Sc  (mass diffusion)

Advection-Dominated Regime

I

Sharp gradients in exact solution

2
Galerkin FEM 1nadequate:

spurious oscillations (Fig. 1)

Figure 1: Spurious oscillations in the standard
Galerkin ¢y solution at high Fe number

Some Classical Remedies
Stabilized FEMs
(SUPG, GLS, USFEM) AEER L L
Add a weighted residual
(numerical diffusion) to
variational equation to
damp out oscillations.

Construct conforming
spaces that incorporate
knowledge of local
behavior of the solution.

Discontinuous Enrichment Method

m First proposed and developed by Farhat et. al. in [1] for the solution
of the Helmholtz equation.

ldea of DEM

“Enrich” the usual Galerkin polynomial field e by the free-space
solutions to the governing constant-coefficient homogeneous PDE.
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m Relation to multi-scale methods: splitting of solution into coarse
(polynomial) and fine (enrichment) scales.

m Unlike PUM, VMS & RFB: enrichment field in DEM is not required
to vanish at element boundaries.

m Continuity across element boundaries is enforced weakly using
Lagrange multipliers A" € Wh.

Two Variants of DEM: True DEM vs. Pure DGM

m Primal unknown ¢ € V" has one of the two forms:

DGM DEM
Vi VE | VP g (VE\WF)
u.h- Lr"I: HF —+ HE

74 \

Enrichment-only “pure DGM": Genuine or “full” DEM:

Contribution of the standard Splitting of the approximation
polynomial field is dropped into coarse (polynomial) and
from the approximation entirely fine (enrichment) scales

Implementation

m Element matrix problem (uncondensed):

kF‘P kPE kPC‘- uP rP

. . .
kEP kEE kE uE o rE.
kK= k¥ 0 A o

Due to the discontinuous nature of V& uF can be

eliminated at the element level by a static condensation.
m Statically-condensed true DEM element system:
KPP |PC ifE <P
(ECP EGC)( x ):(FG)’

m Statically-condensed pure DGM element system:

_k{jE{'kEE‘}—lkECA g i r{:_ i k{jE{'kEE*}—lrE.

where
EPP 3 kFP . kPE(kEE)—lkEP EPG = kP'lf'_l — kPE(kEE)—l kEG
EGP — k{:'-P — k{jE{kEE}—lkEF EGG — _k{jE(kEE)—l kE{j
i;F' - rF" - kF’E“(EE)—I“,E1 ..‘ i;':l - rCJ - kGE(kEE)_lrE.

*Joint work with Dr. Charbel Farhat and Dr. Radek Tezaur.

Hybrid Variational Formulation of DEM
for Advection-Diffusion

m Strong form:

Find u € H*(Q) such that

S) - —Au+a-Vu = F, inf
(2] i = g bl =d
[i4] = 0 oh F

Figure 2: Decomposition of domain £ into elements £2°

m Weak hybrid variational form: Rt
Find (u,A) € V x W such that (2 = B oy
(W) : a(v,u) + b(A\v) = r(v), VveV [l B[
b(,u, u) = —rgr(,u] Y e W reke’ T re’
where
Y = {v LY e Hl(QE)} o =TT Ml T =)
a(v,u) = (Vv +va,Vu)g, r(v)=(Ff,v)
BlA, v] = / AV — Vo dr—l—/)wdr, Fal 1t :/,ugdr
Wi =F. 5, | Mol | o= |

m Space of Lagrange Multiplier Approximations WW":

a(u,v) = [s(a-Vu—Auv)vdQ+ [ Vu-nvdl
S Ze Ze" fre,e’ {TUE - NeVe + Vg - Ny Ver)dr

|}

Suggests approximating:

! f

i i i TE :
A= Vuent =< Fagn" onl™*
and

Ma~—VeE-n onT

if a Dirichlet boundary condition is to be enforced on TI.

Approximation Spaces for 2D
Advection-Diffusion

Exponential Enrichment Functions

m Derived by solving Luf = a- Vuf — Auf = 0 analytically.

Enrichment functions for 2D advection-diffusion:

UE(}I{: Hr‘) Ty E%[Cﬂﬁ ¢+cos HI}{x—xr,i}e%{ﬂ” d+sin 8 )(y —¥r i)

Q' = {6’;}?; € [0,27) = set of angles specifying V°

: E
(xr.i, yr.i) = reference point for u;

-0 - -2 (=] "= =

Figure 3: Plots of enrichment finction w® (x:#;) for several values of &, (@ = 0)

Exponential Lagrange Multipliers on a Straight Edge

Lagrange Multiplier Approximations: A" ~ VuE - hir, .,

E
a|

NOINE Z A exp { - |cos(¢ — a¥) + cos(0x — o) (s - }}

k=1
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=abis;8,)

m Discrete Babuska-Brezzi inf-sup condition: a.e. in the mesh

E

n
R
-

# Lagrange multipliers per edge = n

m Bound is a necessary, but in general not a sufficient condition for ensuring
a non-singular global interface problem.

Numerical tests |5] suggest to limit:

o
max{n € Z|n < T}
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Figure 4: Straight edge of element (1% oriented at angle o

m The set @" that defines the enrichment field typically leads to too many
Lagrange multiplier dofs. I

e = {Hi}ﬂil — set of angles that specifies the Lagrange multipliers ¢ @"

DEM/DGM Element Design for
2D Advection-Diffusion

Lagrange Multiplier Selection & Truncation

Two Lagrange multipliers A"(s; 87) and A\"(s; #3) given on a straight
edge ' are redundant (that is, A(s:63) = CA(s;#3) for some real
constant C) if
oA _ pA X gA
T — 05 e 07 + 65
2 | 2

— ey

for any n € Z, where oV is the angle at which 'Y is oriented.

m Key Observation: If © as a set of angles that are clustered around a/:

F?l

i A
O =af + {Bti=, {8k }i=1 € [0,27)

the necessary redundancy condition (Lemma 1) becomes mesh-independent:

et _ G w et
2 “ 2

nm.

Mesh Independent Element Design Procedure

Pa Pa
=

Enrichment Functions: “E (x: 9:] - ET{EDS d+cos B )(x—xp ;) e sin g—sin 87 ) (v —¥r i)

. i \
Lagrange multipliers: )\h(S)h—g — E%L[CQSH*—&JHWS.E‘&]{S—sr__;[]

Algorithm 1. DGM/DEM element design

Fix nf € N (the desired number of angles defining V).

Select a set of nE distinct angles {ﬂk}il between [0, 27).

Let ©¥ = ¢+ {H;}7,.

Letnt = L%J

Choose a set of n* distinct angles {.ﬁk}ﬂil between [0, 7).

for each edge 'Y € '™ having slope oY
Let ©* = a¥ + {5 }ﬂil (the set of angles defining the Lagrange
multiplier approximations on FE’E!).

end for

Some DGM/DEM Elements

Notation

DGM Element: Q@ — nf — n*
DEM Element: Q — n* — n** = [Q — nf — n?] U [@]

‘Q": Quadrilateral

nf: Number of Enrichment Functions

n: Number of Lagrange Multipliers per Edge
(J1: Galerkin Bilinear Quadrilateral Element

Ag,= :
\Akf/}:%:'j

il

e

ib.) Lagrange multiplier dofs

(a.) Enrichment basis

Figure 5 Ilustration of the sets ©* and &* that define the () — 8 — 2 element

Table 1: Some DGM and DEM elements

Name n- e n =ia

T | 4 d+{ZE :m=0,..,3] 1 ¢
Q-85 8 ﬂ.ﬁ—'_{;%'m:ﬂ"”’?} 2 rr:x”—l—{ﬂ,%;
Q-12-3 |12 || ¢+{%:m=0,.,11} | 3 | o +{53 E%,
Q—lﬁ—f 16 {‘H{TT;: m=0 15%- R
@—-5-1 5 i B A R R 1 O —T
@_g_z++ 9 .;f;+{i*;:m:0...,8} 2 ﬂaﬂﬂn %3}
Q—i3-3" | 19 || % =019t | 3 o e T Tg}’
Q—-17—-4" | 17 || ¢+ {F :m=0,..,16} | 4 || ' +{0,F.%, 3}

Computational Complexity & Properties

Table 2: Computational complexity of some DGM, DEM, and standard Galerkin elements

Element Asymptotic % of dofs 5_ten~::ii width for
uniform n = n mesh

{-'t}l Maj g

QZ‘ 3ﬂ,5.,r 21

o8 5ng; 33

Qy e, 35

Q - Eﬂe.f T
L= g, 14
Q —12—3 ﬁﬂe! 21
Q — 16 — 4 Bﬂe: ]
= 5= 3Ny 21
o e 5 ey 33
Q — 13 — 3+ ?ﬂex 45
'L:} — 17 — 4+ gﬂe.f B

m Exponential enrichments = all integrations can be computed analytically.

m Luf = 0 = convert volume integrals to boundary integrals:

a(vE, uf) :f{TvE-‘FuE—I—a-"FuEvE)dQ:/"FUE-nan’F.
- 4

i

Numerical Results

Double Ramp Problem on an [—shaped Domain

1 m Homogeneous Dirichlet boundary
: u=20 conditions are prescribed on all six
; sides of L—shaped domain €2
=
m Advection direction: ¢ = 0
- u=20 R m Source: f =1
| m Strong outflow boundary layer along
u=20 Q the linesx= 1
,— m [wo crosswind boundary layers along
=" 1 o= Gangy =1

m A crosswind internal layer along
¥ = b

Figure 6: L-shaped domain

Galerkin DGM DEM

nd

04

ni
o

Rl 2 1L 21D
- p . id . . = id

L’
[
=l n ln

Figure 11: Solution to L-shaped double ramp problem along the line w = 0.5 Pe = 10%, 1200 elts.

Table 3: Lg[ﬂ] errors relative to a reference solution®:
L-shaped double ramp problem, Pe = 107

m No oscillations can be seen In the

; # elements & P—-8-=2 II;'—'?—E"'I

computed DGM and DEM solutions. A e e A

4900 526 « 10-2 | 2.81 x 102 | 1.65 x 10~

m DEM elements outperform DGM 10,800 || 2.02 % 10-? | 154 x10-2 | 7.43 « 10-4

elements in general for this problem. Lepments 4 Ao Ao

: 1200 657 = lﬂ—i 500 = ID—E 471 = 10-3

m Pure DGM elements experience some 4800 | 236 x 1072 | 1.02 %107} | £.24x 10~
L oen . 10, 200 1.08 = 10™" 4.54 = 10 .75 = 10

difficulty along the y = 0.5 line, the e [ B[ A=B=1 [ BTt

location of the crosswind internal 1200 | 3.78x10~2 | 133 x10-% | 2.04:x 103

4800 1.03 x 10—2 | 917 = 10~3 | 1.26 x 10~*

|a}zer_ 10, 800 370 x 107 | 402 x10-* | 2.12 = 10—

* Bince an analytical salution to this problem is not available, in computing the relatiee error, we use n placs of the mact saluticn a refersnce solution, computed w=ming a

Galerkm Qg polymormal sl=ment on a 43,200 = 3 - {120 = 1200 sl=ment mesh.

Conclusions & Ongoing Work

m DGM/DEM Elements outperform their Galerkin and stabilized
Galerkin counterparts of comparable complexity by at least one (and
sometimes many) orders of magnitude difference.

m For Pe = 103, to achieve a 0.1% level of relative error:

B Q—-8—-2and @ —9— 2" elements: reduce the dof requirement of
the ()2 element by a factor of = b.

m Q@ —12—-3and Q — 13 — 3" elements: reduce the dof requirement
of the (3 element by a factor of = 15.

B Q—16—4and Q — 17 — 47 elements: reduce the dof requirement
of the @y element by a factor of = 15.

m In a high Péclet regime, DGM and DEM solutions are almost
completely oscillation-free, in contrast with the Galerkin solutions.

m Results presented herein demonstrate the potential of DEM for
realistic advection-dominated transport problems in fluid mechanics.

m Ongoing/future work:

m DEM for variable-coefficient problems.
m Projection-method based DEM for incompressible, time dependent
Navier-Stokes.
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